Bending Rigidities and Interdomain Forces in Membranes with Coexisting Lipid Domains.
نویسندگان
چکیده
To precisely quantify the fundamental interactions between heterogeneous lipid membranes with coexisting liquid-ordered (Lo) and liquid-disordered (Ld) domains, we performed detailed osmotic stress small-angle x-ray scattering experiments by exploiting the domain alignment in raft-mimicking lipid multibilayers. Performing a Monte Carlo-based analysis allowed us to determine with high reliability the magnitude and functional dependence of interdomain forces concurrently with the bending elasticity moduli. In contrast to previous methodologies, this approach enabled us to consider the entropic undulation repulsions on a fundamental level, without having to take recourse to crudely justified mean-field-like additivity assumptions. Our detailed Hamaker-coefficient calculations indicated only small differences in the van der Waals attractions of coexisting Lo and Ld phases. In contrast, the repulsive hydration and undulation interactions differed significantly, with the latter dominating the overall repulsions in the Ld phase. Thus, alignment of like domains in multibilayers appears to originate from both, hydration and undulation repulsions.
منابع مشابه
A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers.
The tensile force along a cylindrical lipid bilayer tube is proportional to the membrane's bending modulus and inversely proportional to the tube radius. We show that this relation, which is experimentally exploited to measure bending rigidities, can be applied with even greater ease in computer simulations. Using a coarse-grained bilayer model we efficiently obtain bending rigidities that comp...
متن کاملStable patterns of membrane domains at corrugated substrates.
Multicomponent membranes such as ternary mixtures of lipids and cholesterol can exhibit coexistence regions between two liquid phases. When such membranes adhere to a corrugated substrate, the phase separation process strongly depends on the interplay between substrate topography, bending rigidities, and line tension of the membrane domains as we show theoretically via energy minimization and M...
متن کاملCalculating the Bending Modulus for Multicomponent Lipid Membranes in Different Thermodynamic Phases
We establish a computational approach to extract the bending modulus, KC , for lipid membranes from relatively small-scale molecular simulations. Fluctuations in the splay of individual pairs of lipids faithfully inform on KC in multicomponent membranes over a large range of rigidities in different thermodynamic phases. Predictions are validated by experiments even where the standard spectral a...
متن کاملLateral Diffusion of Proteins on Supported Lipid Bilayers: Additive Friction of Synaptotagmin 7 C2A–C2B Tandem Domains
The synaptotagmin (Syt) family of proteins contains tandem C2 domains, C2A and C2B, which bind membranes in the presence of Ca(2+) to trigger vesicle fusion during exocytosis. Despite recent progress, the role and extent of interdomain interactions between C2A and C2B in membrane binding remain unclear. To test whether the two domains interact on a planar lipid bilayer (i.e., experience thermod...
متن کاملSteric confinement of proteins on lipid membranes can drive curvature and tubulation.
Deformation of lipid membranes into curved structures such as buds and tubules is essential to many cellular structures including endocytic pits and filopodia. Binding of specific proteins to lipid membranes has been shown to promote membrane bending during endocytosis and transport vesicle formation. Additionally, specific lipid species are found to colocalize with many curved membrane structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 108 12 شماره
صفحات -
تاریخ انتشار 2015